I LED e la costante di Planck con il Laboratorio di Fisica Open

Karl Ernst Ludwig Max Planck

Nato il 23 aprile 1858 a Kiel, proveniva da una famiglia ricca di stimoli culturali: fra i suoi avi si contavano insigni teologi e suo padre era un professore di diritto di tutto rispetto.

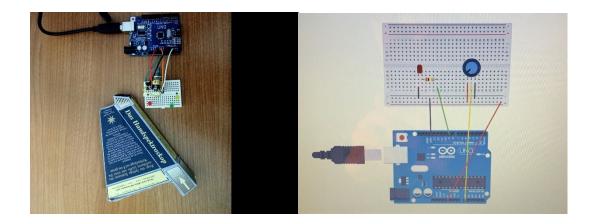
Trasferitosi con la famiglia a Monaco di Baviera nel 1867, poco prima dell'unificazione della Germania, il piccolo genio frequenta dapprima il Gymnasium a Monaco, in cui ha la fortuna di incontrare un ottimo professore di fisica che gli inculca, fra l'altro, il principio della conservazione dell'energia . All'età di soli 16 anni per seguire il corso di fisica entra nelle Università di Monaco e di Berlino.

A ventotto anni, dal 1880 al 1885 insegna all'Università di Monaco e successivamente, grazie alle sue stupefacenti doti, ottiene la cattedra di fisica all'Università di Kiel. In seguito, dal 1889 al 1928 lavora all'Università di Berlino proseguendo l'attività didattica e di ricerca Considerato il fondatore della meccanica quantistica e ricordato come uno dei più grandi fisici del Novecento, a Max Planck si devono alcune rivoluzioni concettuali di immensa portata, tali che

Novecento, a Max Planck si devono alcune rivoluzioni concettuali di immensa portata, tali che ancora oggi influenzano la fisica contemporanea. E' infatti considerato il padre della teoria quantistica.

Scopo dell'esperimento

Calcolare la tensione di innesco del led (differenza di potenziale che permette l'accensione del led) necessaria a calcolare e verificare la costante di Planck.


Materiale utilizzato

- Geogebra
- Arduino
- breadboard
- Potenziometro
- Cavi e resistenza
- 3 led (verde, giallo, rosso)

Descrizione delle varie fasi dell'esperimento:

Fase 1: Preparazione dell'Hardware (inserire anche una foto del progetto reale)

Dopo aver deciso il progetto di Arduino su Tinkercad lo abbiamo messo in pratica utilizzando 3 led (verde, giallo, rosso), una breadboard, una resistenza, vari cavi e un potenziometro; collegando tutto ad arduino.

Fase 2: Preparazione del software (descrizione dei vari programmi utilizzati)

I programmi utilizzati sono: Geogebra online (per elaborare i grafici), Tinkercad (per progettare la struttura di Arduino) e un generico sito o programma per leggere uno script in python (per leggere un programma che trova la corrente di saturazione inversa ed un'altra costante).

Fase 3: L'esperimento (inserire anche immagini relative ai grafici ottenuti)

attraverso un programma in python abbiamo realizzato dei grafici.

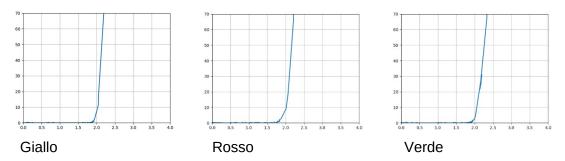
Nel grafico sull'asse delle x è rappresenta la differenza di potenziale mentre sull'asse y è rappresentata l'intensità di corrente.

I grafici che abbiamo trovato sono i grafici caratteristici dei vari led e rappresentano la funzione della corrente dei led.

$$i=i_s(e^{rac{q\Delta V}{\eta k_s T}}-1)$$
 sono tutte costanti tranne V

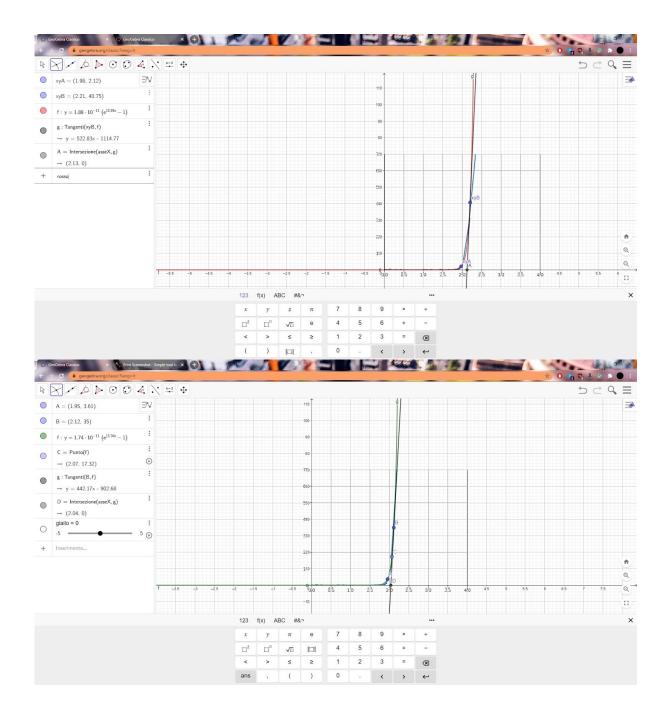
i = Intensità

is = Corrente di saturazione inversa


e =Costante di Nepero

g = Carica dell'elettrone

V= Differenza di potenziale


= Costante di Boltzmann

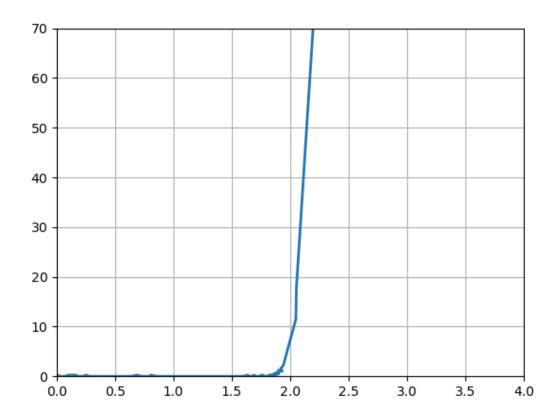
T = Temperatura

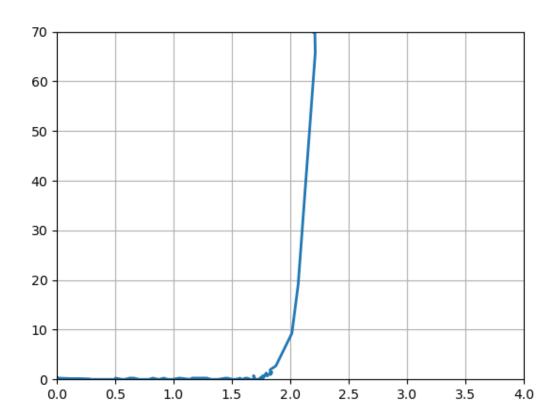
I grafici grandi si trovano in fondo

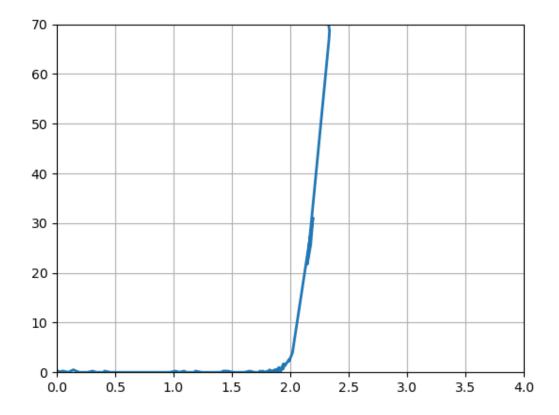
Elaborazione dei dati (inserire anche i grafici GeoGebra e le tre costanti di Planck ottenute con il led rosso, verde e giallo, fare media ed errore percentuale, ricordate le unità di misura):

Costante di Planck: 6.63×10^{-34} J·s

Costante di Planck del led rosso: 6.42×10^{-34} J·s Costante di Planck del led giallo: 6.32×10^{-34} J·s Costante di Planck del led verde: 6.5×10^{-34} J·s


Media: $6.41 \times 10^{-34} \text{ J} \cdot \text{s}$


Errore percentuale del rosso: 3.3% Errore percentuale del giallo: 4.9% Errore percentuale del verde: 2% Media errore percentuale: 3,4%


Conclusioni e impressioni:

In conclusione, nonostante la scarsa qualità dei mezzi a nostra disposizione, siamo riusciti a trovare la costante di Planck con un errore del 3,4%. Una delle possibili cause di errore può riscontrarsi nel fatto che i LED non emettono una singola frequenza, ma emanano una banda di circa 40/60 nm di larghezza, mentre il valore grafico si riferisce al centro della banda; un altra possibilità di errore dipende sicuramente dall imprecisione nel prendere i vari punti e valori e infine una piccola percentuale che dipende dall imprecisione dello spettroscopio fatto in casa (guardare foto in alto).

Apriletti, Paluzzi, Martellotti R. e A, Ponti, Oancea, Santorelli , Tomassoni- Classe IV AS

